Quantum current steps due to the correlative quantum phase slip effect

  • Josephson, B.D. Potential new effects in superconducting tunnels. Phys. Lett. 1251-253 (1962).

    advertisements
    Article – Commodity

    Google Scholar

  • Shapiro Streams, S.; Josephson’s Superconducting Tunnels: The Microwave Effect and Other Observations. Phys. Reverend Litt. 1180-82 (1963).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Averin, D. V. & Likharev, K. K. in Mesoscopic phenomena in solids (Altshuler eds., BL et al.) Ch. 6 (Northern Holland, 1991).

  • Mooij, J. E. & Nazarov, Y. V. Superconducting nanowires as quantum slip phase junctions. nat. Phys. 2169-172 (2006).

    CAS
    Article – Commodity

    Google Scholar

  • Averin, DV, Zorin, AB & Likharev, and K. K. Bloch oscillations in Josephson Small Junctions. Will. Phys. JETP 61407-413 (1985).

    advertisements

    Google Scholar

  • Picula, JP et al. Single-electron current sources: Towards a precise definition of the ampere. Rev. DoD. Phys. 851421–1472 (2013).

    advertisements
    Article – Commodity

    Google Scholar

  • Astafiev, OV et al. Coherent quantitative phase slip. temper nature 484355–358 (2012).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Zener, CM Non-adiabatic junction of the proc energy levels. Brooke. R. Soc. Lund. a https://doi.org/10.1098/rspa.1932.0165 (1932).

  • Golubev, D. S. & Zaikin, A. D. Quantum tunneling of the order modulus in superconducting nanowires. Phys. Reverend B 64014504 (2001).

    advertisements
    Article – Commodity

    Google Scholar

  • Schön, G. & Zaikin, Quantum correlated effects, phase transitions, and dissipation dynamics of very small tunneling junctions. Phys. re come back. 198237-412 (1990).

    advertisements
    Article – Commodity

    Google Scholar

  • Tinkham, M.; Introduction to superconductivity Second ed. (McGraw-Hill, 1996).

  • Kuzmin, L.S. & Haviland, D.B. Observation of Bloch vibrations in the ultrafine Josephson junction. Phys. Reverend Litt. 672890 – 2893 (1991).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Kuzmin, L., Pashkin, Y., Zorin, A. & Claeson, T. Linear presentation of Bloch oscillations in small Josephson junctions. Physica B 203376-380 (1994).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Landau, L. D. On the theory of energy transfer in collisions. I. Phys. Zs. Sujit 188 (1932).

    CAS

    Google Scholar

  • Zaikin, A. D., Golubev, D. S., van Otterlo, A. & Zimanyi, T. Quantum phase slips and transfers in super-thin superconducting wires. Phys. Reverend Litt. 781552 (1997).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Peltonen, JT et al. Coherent flux tunneling through nanowires. Phys. Reverend B 88220506 (2013).

    advertisements
    Article – Commodity

    Google Scholar

  • Peltonen, JT et al. Coherent dynamics and decoherence in a superconducting weak loop. Phys. Reverend B 94180,508 (2016).

    advertisements
    Article – Commodity

    Google Scholar

  • De Graaf, SE et al. Charge the quantum interference device. nat. Phys. 14590-594 (2018).

    Article – Commodity

    Google Scholar

  • Linzin, S et al. Structural and electrical properties of niobium nitride thin films grown by atomic layer deposition. above. Sciences. Technol. 30035010 (2017).

    advertisements
    Article – Commodity

    Google Scholar

  • Sacépé, B., Feigel’man, M. & Klapwijk, T.M. Quantum collapse of superconductivity in low-dimensional materials. nat. Phys. 16734-746 (2020).

    Article – Commodity

    Google Scholar

  • Zaitsev’s Equations, A.V. Quasiclassical Theory of Superconductivity of Contiguous Metals and Characteristics of Tight Microconnections. Will. Phys. JETP 591015-1024 (1984).

    advertisements

    Google Scholar

  • Abai, S et al. Charge transport at InAs nanowire Josephson junctions. Phys. Reverend B 89214508 (2014).

    advertisements
    Article – Commodity

    Google Scholar

  • de Graaf, S.E., Shaikhaidarov, R., Lindström, T., Tzalenchuk, A.Y. & Astafiev, OV Charge control for blockade of Cooper pair tunnels in highly turbulent nanowires in an inductive environment. Phys. Reverend B 99205115 (2019).

    advertisements
    Article – Commodity

    Google Scholar

  • Glück, M., Kolovsky, A. R. & Korsch, H. J. Wannier-Stark. Echoes in optical and semiconductor superlattices. Phys. re come back. 366103–182 (2002).

    advertisements
    MathSciNet
    Article – Commodity

    Google Scholar

  • Barron, A.; & Paterno, c. Physics and applications of the Josephson effect vol. 1 (John Wiley & Sons, 1982).

  • Averin, DV, Nazarov, Y.V., Odintsov, AA Uncorrelated tunneling of magnetic flux Cooper and Quanta pairs at ultrafine Josephson junctions. Physica B 165945-946 (1990).

    advertisements
    Article – Commodity

    Google Scholar

  • The Tien, PK, Gordon, and JP Multiphoton process is observed in the interaction of microwave fields with tunneling between superconducting films. Phys. pastor. 129647-651 (1963).

    advertisements
    Article – Commodity

    Google Scholar

  • Roychowdhury, A., Dreyer, M., Anderson, JR, Lobb, CJ & Wellstood, F. C. Microwave-assisted Cooper-pair Incoherent Tunneling in Josephson STM. Phys. pastor. 4034011 (2015).

    advertisements
    Article – Commodity

    Google Scholar

  • Cote, B et al. Microwave-assisted tunneling and interference effects at superconducting junctions under fast driving signals. Phys. Reverend B 101134507 (2020).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopy in thermometry and cooling: physics and applications. Rev. DoD. Phys. 78217 (2006).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Giblin, SP et al. Achieving a quantum current standard at a temperature of liquid helium with a reproducibility of sub-ppm. metrology. 57025013 (2020).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Yamahata, G., Giblin, S. P., Kataoka, M., Karasawa, T. & Fujiwara, A. Current high-resolution generation in a nanoampere system of a silicon single-trap electron pump. Sciences. re come back. 745137 (2017).

    advertisements
    CAS
    Article – Commodity

    Google Scholar